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Circadian entrainment and phase resetting differ markedly
under dimly illuminated versus completely dark nights
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Abstract

An endogenous circadian pacemaker uses photic input to synchronize mammalian physiological and behavioral rhythms to the 24 h day.
Sunlight during dusk and dawn is thought to entrain the pacemaker of nocturnal rodents, whereas moonlight and starlight are presumed to
exert little influence. We show that, to the contrary, dim illumination (<0.005 lux), similar in intensity to starlight and dim moonlight, markedly
alters entrainment of hamster activity rhythms. Under 24 h light:dark:light:dark cycles (LDLD), for example, activity rhythms can disassociate,
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r split, into two distinct components, and the incidence of split entrainment is increased when daily scotophases are dimly lit r
ompletely dark. The three present studies examine whether dim illumination promotes LDLD-induced splitting (1) by increasing
eedback during novelty-induced activity bouts, (2) by potentiating nonphotic and/or photic resetting, or (3) by influencing phase
esponses under skeleton photoperiods simulating increases in day length. Experiment 1 illustrates that dim-exposed animals
hythms, while animals without dim light do not, despite equivalent activity levels. In Experiments 2 and 3, dim illumination potentia
onphotic and photic resetting, and the specific nature of these interactions suggests mechanisms through which dim illuminatio
ntrainment under LDLD. Dim light likely promotes LDLD-induced splitting by facilitating both nonphotic resetting and bright light-in
hase jumping in animals entrained to short nights. The actions of dim illumination may be distinct from canonical responses to b
nd potentially influence the interactions between oscillators comprising the circadian pacemaker.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Day and night are often simulated in the laboratory by
4 h lighting regimes alternating between moderate indoor

ight levels and complete darkness. Such light:dark cycles
re sufficient to entrain activity rhythms in most mammals,

ncluding the rodents commonly used to characterize the cir-
adian system. In the wild, however, nocturnal rodents are

Abbreviations:LDLD, light:dark:light:dark cycle; PIR, passive infrared;
, free-running period;α, nocturnal activity duration;ψL/D, phase angle of
ntrainment to the light to dark transition
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rarely active in complete darkness and instead emerge
darkened burrows at night to navigate a landscape dimly
the moon and stars, which can provide illumination as
as 0.04 and 0.3 lux at the quarter and full moons, respec
[3,6,42]. Such dim illumination is commonly thought to ha
little influence on the circadian system since light at this
tensity does not appear to produce phase shifts or sup
melatonin secretion—two hallmark circadian response
light exposure during subjective night[6,7,30,31].

Challenging this view, we have shown that nocturna
lumination comparable in intensity to that of dim mo
light markedly alters entrainment of hamster activity rhyth
across several distinct paradigms. In Siberian hamsters
ferred from long day to short day photoperiods, the dura
of nocturnal activity lengthens more rapidly under dimly

166-4328/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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nights than completely dark nights, and other photoperiodic
responses are likewise accelerated[13]. Further, dim illumi-
nation markedly alters the entrainment of Syrian hamsters
held under more exotic conditions such as non 24 h lighting
schedules (i.e. T cycles)[17] and 24 h light:dark:light:dark
(LDLD) cycles [13,15]. Within this latter paradigm, some
animals entrain in a conventional, unimodal manner with
wheel running activity restricted to one scotophase of the
LDLD cycle, whereas other individuals regularly divide ac-
tivity between the two daily scotophases (i.e. they exhibit
“split” rhythms) [11,12,14,15,18,19]. Dim illumination dur-
ing the two scotophases (i.e. dim “scotopic” illumination),
rather than complete darkness, more than triples the in-
cidence of these split rhythms[13,15]. Entrainment under
each paradigm has been interpreted in the context of multi-
oscillator models of the circadian pacemaker, first articulated
by Pittendrigh and Daan[35]. In each case, circadian re-
entrainment is thought to involve changes in the phase re-
lations between two or more coupled, or interacting, pace-
makers. As scotopic illumination is highly effective in each
of these paradigms, we have proposed that it alters the in-
teractions between putative oscillators[13,15]. The present
studies examine for the first time the role of dim illumina-
tion in LDLD-induced splitting in terms of basic entrainment
processes.

Circadian phase can be reset in a time-gated fashion by
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resulting expression of a phase jump, or a split rhythm, may
be dependant on the duration of the alternative scotophase
[15].

Published photic fluence response curves in this species
suggest that the intensity of dim illumination used in our
prior studies would not produce phase shifts on its own
[7,30,31]. We noted in an earlier study that male Syrian ham-
sters with dimly lit scotophases displayed higher wheel run-
ning levels than animals with completely dark scotophases
[15]. Dim light could promote LDLD-induced splitting by
increasing the effective dose of the nonphotic stimulus dur-
ing novelty-induced activity bouts under LDLD. Alterna-
tively, dim illumination may potentiate phase resetting re-
sponsiveness to nonphotic cues and/or bright light. Finally,
as LDLD-induced split rhythms may reflect changes in the
phase relations of coupled oscillators[15], scotopic illumina-
tion could exert its influence by altering circadian coupling.
Lacking a direct assay of circadian coupling[25,39], we may
best infer whether dim light operates at this level through
convergent analysis of circadian behavior under various
paradigms where changes in behavior are thought to depend
on adjustments in the phase relations of coupled oscillators
[33,35].

Each of the three following experiments characterizes the
influence of dim illumination on a factor potentially con-
tributing to the emergence of LDLD-induced split rhythms.
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oth nonphotic and photic stimuli[20,26], and each type o
eitgeber has been posited to contribute to the inductio
plit rhythms under LDLD cycles[12,15,18]. For example
hen “novel wheel running” (NWR) is repeatedly sch
led during subjective day, animals that engage in ro
WR later exhibit split rhythms, whereas less active “s
ards” do not[11,18,19,28,40]. In other experiments usin
DLD, split rhythms appear to be triggered by activity
uced by transfer to a wheel running cage or by a
hange[15]. These results are consistent with a hypoth
hat nonphotic phase shifts of distinct oscillator populat
ontribute to the emergence of split rhythms under LD
12,15,18].

Bright light is likewise implicated in splitting under LDL
ince split rhythms are not sustained under constant dar
i.e. activity components rapidly rejoin)[14,18]. Addition-
lly, an inductive role for the bright light of LDLD cycles
uggested by the spontaneous emergence of a second a
out when the duration of the scotophase entraining noct
ctivity is sufficiently reduced[12]. The emergence of the
DLD-induced split rhythms bears some resemblance t
e-entrainment that occurs under a “skeleton” photope
hen the two light pulses simulate increasing day leng
nder these conditions a “phase jump” occurs, where a

ty abruptly crosses one of the entraining light pulses
ealigns into the longer scotophase previously reflecting
ective day[34,41]. Both phase jumps and LDLD-induc
plit rhythms emerge after bright light compresses the
ation of subjective night, thereby challenging circadian
rainment. Beyond a “minimum tolerable night”[34,41], the
y

pecifically, we assessed whether dim illumination
rates by modulating (1) novelty-induced activity lev
2) nonphotic and bright photic phase resetting and
e-entrainment under skeleton photoperiods. Experime
eplicates and extends our previous report, demonstr
hat LDLD-induced splitting is increased with dimly ill
inated scotophases but not by augmented wheel ru

ntensity in the absence of dim light. Incorporating ma
lations designed to mimic the nonphotic and bright ph
timuli under LDLD, Experiment 2 examined whether ph
esetting is differentially influenced by dimly lit versus d
ree-running conditions. Lastly, Experiment 3 investiga
hether scotopic illumination affects the emergence of p

umps elicited by skeleton photoperiods simulating incre
n day length. These two latter experiments demonstrate
hase resetting and phase jumping are altered by dim ligh
anner that may involve changes in the interactions bet

oupled oscillators.

. Materials and methods

.1. General methods

.1.1. Breeding and initial husbandry conditions
For each of the following experiments, female Syrian h

ters (Mesocricetus auratus) were bred from stock originally pu
hased from Harlan (HsdHan:AURA, Indianapolis, IN) and re
ithin our laboratory under a 14 h light:10 h dark photocy

LD 14:10, lights on: 0300 PST, lights off: 1700 PST). D
ng this time, 40 W fluorescent bulbs provided photophas
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lumination of 100–300 lux at cage lid, with complete darkness
during the scotophase (i.e. no computer lights or other extra-
neous light sources). Prior to use in experiments, animals were
group-housed without running wheels inside polypropylene cages
(48 cm× 27 cm× 20 cm) located on open racks, with room temper-
ature maintained at 22± 2 ◦C. Food (Purina Rodent Chow #5001,
St Louis, MO) and tap water were available ad libitum. Hamsters
(age 10–12 weeks) were transferred to individual light-tight hous-
ing units for each of the following experiments, which were con-
ducted in compliance with all the rules and regulations of the Insti-
tutional Animal Care and Use Committee, University of California,
San Diego.

2.1.2. Scotopic illumination
Scotopic illumination was provided by green light-emitting

diodes (LEDs; Arcolectric, Thousand Palms, CA) mounted in the
back wall of each individual housing unit. These LEDs have a
peak transmission wavelength of 560 nm with a one half band-
width of 23 nm as measured by an Ocean Optics PS1000 spec-
trometer (Dunedin, FL). While this scotopic illumination has been
conservatively reported as <0.1 lux[13,15], more precise mea-
surements conducted with an IL1705 Radiometer system (Inter-
national Light, Newburyport, MA) revealed that the dim light in-
tensity used in the current and previous studies is even lower than
previously documented. As measured at hamster eye level in the
brightest region of the cage floor, scotopic illumination used cur-
rently was 4.2× 10−3 lux and 7.9× 10−6 �W/cm2, equivalent to
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2.2. Experiment 1

2.2.1. Procedures
Split rhythms were generated in a manner similar to that de-

scribed previously[15]. Seven hours after lights on, wheel-naı̈ve
animals were transferred to individual cages equipped with running
wheels. Transfer corresponded to the beginning of the daytime sco-
tophase of the new LDLD cycle (LDLD 7:5:7:5; lights off: 1000;
lights on: 1500, lights off: 2200, lights on: 0300 PST). Thereafter,
photophase light intensity was 50–75 lux and scotophase illumi-
nation depended on group assignment, as detailed below. A cage
change was performed two weeks after transfer. During the first
90 min of the daytime scotophase, animals and their wheels were
transferred to cages with fresh bedding, water and food under the
direction of dim red head lamps (<1 lux for <5 min/animal).

At the time of the initial transfer, hamsters were randomly
assigned to one of three groups that differed in the intensity of
scotophase illumination and the type of wheel provided. One group
received scotopic illumination and cages equipped with standard
(i.e. unmodified) wheels (DIM-Std Wheel,n= 7). For the two
remaining groups, scotophases were completely dark, and animals
received cages equipped with either standard wheels (DARK-Std
Wheel, n= 7) or modified wheels (DARK-Mod Wheel,n= 8),
where the metal rungs were wrapped with a plastic guard to
increase wheel-running coordination (c.f.[29]).

2.2.2. Analyses
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.23× 10 photons/cms.

.1.3. Rhythm monitoring and analyses
Activity rhythms were primarily monitored via home cage r

ing wheels (diameter = 17 cm) located within polypropylene c
27 cm× 20 cm× 15 cm). Entrainment was monitored in whe
aive animals (Experiment 2) via passive infrared (PIR) mo
etectors (Coral Plus, Visonic, Bloomfield, CT) positioned∼32 cm
bove the cage floor of cylindrical polyethylene cages (26 cm
meter). Half revolutions of home cage wheels or movement u
IR sensors triggered closures of a relay, which were collecte
ompiled into 6 min bins by DataQuest III or Vital View softwa
Mini-Mitter, Bend, OR).

Actograms were prepared and analyzed with Clocklab soft
Actimetrics, Evanston, IL). As in a previous report[15], the
cotophase reflecting the phase of the animals’ subjective ni
he beginning of the experiment is referred to as the “nightt
cotophase, while the scotophase added during the experim
esignated the “daytime” scotophase. Similarly, the photoph
ccurring before and after the nighttime scotophase are la

he “evening” and “morning” photophase, respectively. Th
onventions are illustrated inFigs. 1 and 2.

.1.4. Statistical analyses
Categorical data were analyzed using contingency stat

Pearson’sχ2). Continuously varying activity and entrainment m
ures were assessed primarily using parametric statistics. Whe
ificant heterogeneity of variance was detected between gr
uskall-Wallis nonparametric tests were performed, and thes
es are reported instead. Statistical tests were conducted wit
oftware (SAS Institute, Cary, NC) and values in text and illus
ions are expressed as mean± S.E.M.
For analytic purposes, this experiment was divided into
-week intervals, beginning with the initial transfer and c
hange, respectively. Group differences in split rhythm incid
nd novelty-induced activity were analyzed separately for eac

erval. Activity rhythms were categorized as split if animals
ressed wheel running bouts longer than 30 min during both
cotophases for at least five consecutive days. Consistent with
us experiments[14,15], there was no ambiguity in classifying a

mals as split or unsplit. Additionally, wheel running counts ac
he first three days of each interval were summed for individua
mals in hourly bins. Group differences in total wheel revoluti
ere assessed for each scotophase and photophase across

hree days of each interval. NWR was operationally defined a
al wheel revolutions expressed during the 5 h daytime scoto
oincident with the initial transfer or cage change.

.3. Experiment 2

Experiment 2 examined whether dim light alters phase r
ing induced by the nonphotic and photic stimuli associated
he emergence of split rhythms in LDLD, using procedures sp
cally designed to mimic conditions of Experiment 1. Dim li

ay influence the sensitivity to novelty-induced activity bouts
hereby potentiate nonphotic phase resetting theorized to oper
he first day of each interval under LDLD. Animals splitting in
wo different intervals of Experiment 1 had different photoperio
istories. Those animals splitting in Interval 1 had been just p
usly entrained to LD 14:10, while animals splitting in Interva
ere previously entrained to LDLD 7:5:7:5, which is technical
keleton photoperiod of LD 19:5. Thus, LD 14:10 and LD 19:5 w
sed presently to simulate differences in entrainment prior to I
als 1 and 2, respectively. Lastly, after the initial transfer to LD
nd intense NWR, animals during Interva1 1 receive bright
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Fig. 1. Representative double-plotted wheel-running actograms depicting unsplit and split rhythms exhibited by hamsters during Experiment 1. Light:dark
bars above each actogram represent photoperiods in effect before (top bar) and during the experiment (bottom bar; also internal shading). White rectangles
represent photophases, and shaded and black bars represent DIM and DARK scotophases, respectively. MP = morning photophase; DS = daytime scotophase;
EP = evening photophase; NS = nighttime scotophase. First and second arrows indicate the time of transfer to wheel running cages and cage change, respectively.
Actograms are scaled 0–150 counts/min.

exposure during early subjective night (e.g. former ZT 12-ZT 17).
This experiment also assessed whether dim illumination influences
phase resetting induced by this compound stimulus (i.e. NWR plus
bright light).

2.3.1. Procedures
Animals were individually housed without running wheels in

cylindrical polyethylene cages (35 cm height× 26 cm diameter).
For 28 days, animals were entrained to either LD 14:10 (lights
on: 0300 PST, lights off: 1700 PST) or LD 19:5 (lights on: 0300
lights off: 2200 PST), during which activity rhythms were mon-
itored with PIR. Photophase and scotophase intensity during en-
trainment was∼100 and 0 lux, respectively. Midway through this
entrainment period, cages were cleaned during the photophase and a

handful of soiled bedding was retained in an effort to reduce novelty-
induced activity. On one day only, the lights-off transition (zeitgeber
time = ZT 12) was advanced by 5 h in order to determine whether
activity onset was negatively masked by light during entrainment to
LD 14:10 and LD 19:5.

As indicated above, phase shifting conditions were designed to
mimic the nonphotic and photic stimulation used during the LDLD-
induced splitting paradigm. As illustrated inFig. 3, phase shifts were
studied under a modified Aschoff Type II design[1], where release
into constant conditions coincides with the application of phase
shifting manipulations. Seven hours after lights on, animals were
transferred from LD 14:10 (transfer at ZT 5) or LD 19:5 (transfer at
ZT 0) to cages with modified running wheels (see Experiment 1).
Animals from each photoperiod were transferred to wheel running
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Fig. 2. Mean hourly counts for the first 3 days of each interval in Experiment
1. For figure clarity, standard errors are not shown. Asterisks signify phases
of the photocycle (i.e. EP, DS) where the DIM-Std Wheel group displayed
activity levels significantly different from the two DARK groups (p< 0.05).
The number in parentheses is the number of animals per group. Animals
that split during Interval 1 were excluded for Interval 2. Abbreviations as in
Fig. 1.

cages with complete darkness (LD 14:10-DARK;n= 7; LD 19:5-
DARK; n= 8) or with dim illumination (LD 14:10-DIM;n= 8; LD
19:5-DIM; n= 8). No attempt was made to control for the intensity
or duration of subsequent wheel running. To determine whether dim
light influenced the response to the compound stimulus, two addi-
tional groups of LD 14:10 animals received a 7 h light pulse (50–75
lux) after 5 h of NWR in complete darkness (LD 14:10-DARK + L,
n= 8) or in dim illumination (LD 14:10-DIM + L,n= 8). After phase
shifting manipulations were complete, animals remained in constant
conditions for two weeks to calculate phase shift magnitude and free
running period length (τ).

2.3.2. Analyses
Using PIR actograms in the Clocklab percentile format, activ-

ity onset and offset were determined for each day over the last two
weeks under entrained conditions (Week 3 and Week 4), and a re-
gression line was fit to each set of seven points. The average length of
activity (α) for each week was derived from the difference between
average onset and offset. Average activity onset is expressed as the
phase angle of entrainment to the light to dark transition (ψL/D),
which is the time difference between the entraining and behavioral
event. PIR actograms were visually inspected for activity onset on
the day of the dark probe by noting the first 6 min bin after lights off
when activity exceeded two counts and was sustained for at least 5
of 8 subsequent bins.

A phase shift was determined for each animal by the displace-
ment between the average activity onset during Week 4 and the time
o sion
l lse
d nts).

Fig. 3. Representative double-plotted actograms depicting entrained and
free-running activity rhythms exhibited during Experiment 2. White and
black bars above each actogram represent the photocycle in effect while
activity was monitored with passive infrared motion detectors (PIR). The
change to internal shading marks the day of transfer to wheel running cages
(for convenience, shading begins at midnight) and the arrow marks the time of
transfer. Entrained PIR rhythms are in Clocklab’s percentile format, whereas
free-running wheel running rhythms are scaled from 0 to 150 counts. The
day of the cage change (CC) and the dark probe (asterisk) are indicated. For
the day of the dark probe, the light to dark transition was advanced by 5 h,
as represented within each actogram. White boxes on the day of transfer in
(E) and (F) represent 7 h light pulses.

Pre- and post-pulse activity rhythms were monitored via different
methods (PIR or wheels), which precludes a precise specification of
the absolute size of phase shifts[2]. Phase shifts were determined
identically for every group, however, so that DIM versus DARK
differences could be assessed. Lastly, the slope of the post-pulse
regression line was used to calculateτ and this value was compared
between groups free-running in constant dim and dark conditions.

2.4. Experiment 3

Ultra long photoperiods (>16–18 h) challenge circadian entrain-
ment in nocturnal rodents, resulting in the expression of a phase jump
if animals are held under skeleton photoperiods simulating increases
in day length[34,38,41]. A similar mechanism may contribute to the
temporal disassociation of component oscillators under LDLD[15].
Experiment 3 was designed to determine whether dim illumination
would influence the timing and pattern of phase jumps under skele-
ton photoperiods. Moreover, this paradigm assesses whether dim
light influences photic entrainment when novelty-induced activity
is minimized.
f activity onset predicted for the day of transfer by a regres
ine fit to visually-identified wheel running onsets (7 post-pu
ays were used, excluding the first four to allow for transie
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2.4.1. Procedures
Hamsters were held under a series of skeleton photoperiods,

where the interval between entraining light pulses was systemati-
cally reduced (seeFig. 6), Under this series of photocycles, sco-
tophases were marked by either complete darkness (DARK,n= 16)
or dim illumination (DIM, n= 16). On the first day of the experi-
ment, hamsters were transferred from LD 14:10 to running wheel
cages identical to those used in Experiment 2. Although this transfer
occurred during subjective day, the house lights remained on after
transfer, and a new light:dark cycle was immediately instated by
symmetrically reducing the following scotophase by 3 h (LD 17:7;
lights on: 0130 lights out: 1830 PST). LD 17:7 was replaced one
week later by an equivalent skeleton photoperiod with two 3 h light
pulses (LDLD 3:11:3:7; lights on: 0130, lights off: 0430, lights on:
1530, lights off: 1830 PST). At weekly intervals thereafter, the night-
time scotophase was symmetrically reduced by 30 min. The dura-
tion of the daytime scotophase increased equivalently. Cage changes
were performed during the evening photophase and a handful of
soiled bedding was retained in an effort to reduce novelty-induced
activity.

2.4.2. Analyses
Phase jumps were identified for individual animals by visu-

ally identifying the first day when a wheel running bout at least
18 min long was phased within the daytime scotophase and then
repeated on at least three of the four subsequent cycles. The length
of the nighttime scotophase at the time of the phase jump and
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3. Results

3.1. Experiment 1

3.1.1. Emergence of split rhythms
A variety of unsplit and split activity patterns was ob-

served (Fig. 1). Hamsters that restricted activity to the night-
time scotophase were classified as unsplit (Fig. 1A and B),
while hamsters that displayed activity in each of the two daily
scotophases were classified as split, regardless of whether
the split rhythm developed during Interval 1 (Fig. 1C) or
Interval 2 (Fig. 1D). As illustrated inFig. 2, split rhythms
emerged in two different patterns: either developing grad-
ually, with daytime scotophase activity accruing on subse-
quent days (Interval 1), or appearing abruptly, with a ro-
bust activity bout appearing in the daytime scotophase (In-
terval 2). Split rhythms also varied in their stability: either
remaining split over both intervals (Fig. 1C) or consolidat-
ing activity into the daytime scotophase (Fig. 1D). The for-
mer pattern was generally characteristic of split rhythms
developing after the initial transfer, while the latter pat-
tern was observed in all animals that split after the cage
change.

3.1.2. Splitting incidence
ina-
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D 0

scotop
he number of cycles preceding the phase jump were record
ach animal and used to compare DARK and DIM groups. O
phase jump was initiated, we noted the number of cycles

lapsed before activity was completely realigned into the day
cotophase.

24 h histograms were produced for each hamster by aver
heel revolutions within each 6 min bin across the seven da
ach photocycle used in this experiment. Activity onset was
ned as the first 6 min bin surpassing the daily mean that wa
owed by two bins likewise exceeding this threshold. Activity
et was defined as the last time point below the daily mean
as immediately preceded by two bins above threshold.α was
alculated as before, andψL/D was derived as the difference b
ween lights off for the nighttime scotophase and activity on
hese measures were then used to compare entrainment o
nd DARK animals during the first four weeks of the experim
i.e. before a large number of animals expressed phase ju
dditionally, α was determined for individual animals during
eek before a phase jump and during the final week of the ex
ent.

able 1
plitting incidence and novel wheel running (NWRa) during Experiment 1

Interval 1

Split Unsplit NWR

IM-Std Wheel 3 4 7.4± 0.8
ARK-Mod Wheel 1 7 8.8± 0.6
ARK-Std Wheel 0 7 6.2± 0.6b

0.1 >p> 0.05
a Wheel running revolutions (in thousands) during the 5 h afternoon
b Running levels significantly lower than DARK-Mod Wheel (p< 0.05).
The incidence of splitting depended on scotopic illum
ion (Table 1). In Interval 1, DIM-Std Wheel animals tend
o exhibit split rhythms more frequently than animals in
her DARK group (χ2(2) = 4.59,p= 0.08). During Interva
, DIM-Std Wheel animals exhibited a significantly hig

ncidence of splitting than either DARK group, even wh
reviously split animals were excluded from the anal
χ2(2) = 14.49,p< 0.001). Considering splitting inciden
ver both intervals, all DIM-Std Wheel animals exhibi
plit rhythms, while all but one DARK animal had uns
hythms (χ2(2) = 18.22,p< 0.001).

.1.3. Wheel running in LDLD
Group differences in splitting occurred despite the

hat animals within DIM-Std Wheel and DARK-Mod Whe
roups exhibited comparable NWR levels (Table 1; Fig. 2).
im light did not significantly increase NWR during Int
al 1, but DARK-Mod Wheel animals ran at significan

nterval 2 Intervals 1 and 2

plit Unsplit NWR Split Unsplit

0 5.3± 1.3 7 0
7 6.0± 1.0 1 7
7 3.5± 1.0 0 7

p< 0.05 p< 0.0001

hase coincident with transfer or cage change.
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higher levels than DARK-Std Wheel animals (F(2, 19) = 4.64,
p< 0.05). Similarly, during Interval 2, scotopic illumination
did not influence NWR levels of theretofore unsplit animals
(F(2, 15) = 1.68,p> 0.2).

For each interval, all three groups displayed a transient
decrease in wheel running after the NWR displayed dur-
ing the daytime scotophase (Fig. 2). Activity levels within
the subsequent photophase and scotophase did not differ
between groups on the first day of Interval 1. Wheel run-
ning levels across the first day of Interval 2 were similar,
except that the evening photophase activity was reduced,
and DIM-Std Wheel animals were less active than either
DARK group (p< 0.05). Over the course of the subsequent
two days in Intervals 1 and 2, developing split rhythms were
evident for the DIM-Std Wheel animals but not for DARK
animals.

3.2. Experiment 2

3.2.1. Entrainment to LD 14:10 and LD 19:5
As expected, hamsters displayed photoperiod-dependent

differences in entrainment prior to the phase shifting ma-
nipulations (Fig. 3). While under their respective photoperi-
ods, LD 14:10 animals expressed longer active phases than
LD 19:5 animals (e.g. Week 4α: LD 14:10 = 9.88± 0.16 h,
L
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Table 2
Wheel running revolutions (in thousands) in Experiment 2

h (0–5a) h (5–12) h (12–24) h (0–24)

LD 14:10-DIM 4.5± 1.1 8.1± 1.3 3.3± 0.9 16.0± 2.9
LD 14:10-DARK 4.7± 1.2 9.2± 1.4 2.0± 0.9 16.0± 2.8
LD 14:10-DIM + L 4.5± 0.7 3.6± 0.8b 9.1± 1.0b 15.8± 1.4
LD 14:10-DARK + L 4.4± 0.7 5.9± 0.8 5.6± 1.0 15.8± 1.5
LD 19:5-DIM 6.8± 0.9 7.3± 0.9 4.0± 0.9b 21.2± 2.2
LD 19:5-DARK 6.2± 0.9 6.8± 0.9 8.2± 0.9 18.1± 2.2

a Hour (h) 0 = time of transfer to wheel running cages.
b Levels different from DARK cohort (p< 0.1; see text).

3.2.2. Wheel running during the first 24 h after transfer
Following transfer, animals within all groups engaged

in robust wheel running during the first 5 h after transfer
(Fig. 4, Table 2). Wheel running levels tended to taper off
and then rise once more several hours later. LD 14:10 and
LD 19:5-DARK animals, but not LD 19:5-DIM animals,
discontinued wheel running shortly after the initial novelty-
induced activity bout (Fig. 4). Relative to their DARK
counterparts, 19:5-DIM animals displayed a long bout of
novelty-induced activity after transfer (p< 0.05; Fig. 4B)
and did not run robustly at a phase consistent with their prior
entrainment (p< 0.05; Fig. 4B; Table 2). After resumption
of wheel running, LD 14:10 animals receiving the bright
light pulse exhibited wheel running patterns similar to those
of LD 14:10-DARK and -DIM groups, with the exception
that the former animals exhibited less activity during the 7 h
light pulse and a large increase in wheel running during late
subjective night (compareFig. 4A and C,Table 2). Relative
to their DARK cohorts also receiving a light pulse, LD
14:10-DIM + L animals tended to show less wheel running
during the pulse (p= 0.08;Table 2) and a larger increase in
subsequent wheel running (p< 0.05;Table 2).

3.2.3. Phase shifts andτ under constant conditions
The magnitude of phase shifts depended on dim illumina-
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D 19:5 = 8.2± 0.22 h; Kuskall-Wallis Test;p< 0.001) and
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9:5 = 2.75± 0.08 h; Kuskall-Wallis Test;p< 0.001).

On the day of the dark probe, more than 85%
nimals displayed activity onsets that were advance

ess than 30 min relative to that observed during the
eding week. When the difference between activity
et during Week 3 and on the day of the dark pr
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ions serve to verify that photoperiod-dependent differe
n α andψL/D were not a product of negative masking
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ig. 4. Mean hourly revolutions across the 24 h after transfer to wheel r
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Fig. 5. Phase shifts (±S.E.M.) elicited during Experiment 2, as determined
by the difference in post-transfer wheel running onsets and the PIR on-
set displayed during entrainment. Phase advances and delays are plotted
as positive and negative values, respectively. Asterisks signify significant
differences between DIM and DARK groups (p< 0.05).

negligible, and no difference due to DIM light was evident
(t(13) = 0.57,p> 0.5). In contrast, phase advances exhibited
by LD 19:5-DIM animals were∼3 h larger than those exhib-
ited by their DARK counterparts (t(14) =−2.97,p< 0.05).
Additionally, DIM light significantly enhanced the magni-
tude of phase delays exhibited by LD 14:10 animals receiv-
ing NWR followed by a 7 h bright light pulse (t(14) = 2.12,
p= 0.05). When phase shifts were instead calculated relative
to activity onset on the day of the dark probe or to ZT12
(rather than to the Week 4 average activity onset), these re-
sults were upheld (data not shown). No significant differ-
ences inτ were evident between groups in the two weeks
after release into constant conditions. Group means ranged
from 23.89–24.07 h.

3.3. Experiment 3

3.3.1. Emergence of phase jumps
Dim illumination accelerated the expression of a phase

jump, a response that was exhibited ultimately by all ani-
mals (Fig. 6). Four animals with DIM light displayed phase
jumps within three weeks of nighttime scotophase reduc-
tions, and the remaining DIM animals initiated phase jumps
over the next several weeks. In contrast, DARK animals
exhibited phase jumps only after the nighttime scotophase
was reduced to 3.5 h. As a result, DIM animals phase
jumped while the nighttime scotophase was longer relative to
DARK animals (survival analysis,χ2(1) = 14.77;p< 0.001)
and over a significantly broader range of nighttime sco-
tophases (DIM: 6.5–3.0 h; DARK: 3.5–2.5 h; Kuskall-Wallis
test,χ2(1) = 3.72;p< 0.001).

3.3.2. Entrainment before and after the emergence of
phase jumps

In addition to the marked effect on the emergence of phase
jumps, scotopic illumination affected entrainment early in the
study, when animals were transferred from LD 14:10 to LD
17:7. On the week under LD 17:7, activity bouts of DIM
animals were shorter relative to their DARK counterparts,
(α: DIM = 8.19± 0.27; DARK = 9.2± 0.28; p< 0.05, LS
means contrast) and phased closer to the nighttime lights-off
t
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nces disappeared (p> 0.05, LS mean contrasts), and o

he next two weeks, DIM and DARK animals continu
o entrain to skeleton photoperiods similarly (p> 0.05, LS
ean contrasts). As the majority of DIM animals displa
hase jumps over the subsequent weeks, differences

eases in day length in Experiment 3, where scotophases were ma
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trainment were not assessed beyond the fourth week of the
experiment.

After the initiation of a phase jump, the phase of wheel
running continued to realign into the daytime scotophase,
and a phase jump was noted to be complete when no activ-
ity remained within the nighttime scotophase. Once a phase
jump was initiated, the latency to realignment was signif-
icantly longer under DIM conditions (DIM: 12.67± 1.37
days; DARK: 4.88± 1.37 days;t(30) =−4.03, p< 0.001).
α for the week preceding the phase jump, however, did
not differ between animals in DIM and DARK conditions
(5.95± 0.41 and 5.93± 0.41, respectively;t(30) =−0.03,
p> 0.9). After phase jump completion,α expanded within
the daytime scotophase and at the end of the experiment,
DIM animals displayed longer� than their DARK cohorts
(DIM: 10.99± 0.34; DARK: 7.93± 0.35; t(30) =−6.33, p
< 0.001).

4. Discussion

Far from being biologically inefficacious, dim illumina-
tion of an intensity comparable to dim moonlight and starlight
can markedly alter circadian phase resetting and entrainment,
as demonstrated here across three different experiments. As
previously reported for male Syrian hamsters[15], dim light
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Experiment 2 examined whether dim light renders animals
more responsive to nonphotic and photic resetting. Trans-
fer of wheel-naive animals to wheel running cages induced
large phase advances in LD 19:5-DIM animals only. Since
no facilitation of nonphotic phase shifting was observed af-
ter entrainment to LD 14:10, these effects of dim light may
be limited to animals entrained to photoperiods with short
nights. One caveat to the interpretation that dim illumina-
tion enhances nonphotic sensitivity after LD 19:5 is that rel-
ative to their dark cohorts, LD 19:5-DIM animals ran for
a longer time after transfer to wheel running cages. How-
ever, this may be a consequence, rather than a cause of their
larger phase advances. Existing intensity–response curves,
collected under admittedly different conditions, saturate at
wheel-running levels accomplished by animals in Experi-
ment 2 within the first 5 h after transfer[4,37]. Further, the
phase of the circadian pacemaker is generally reset within
a few hours of exposure to photic and nonphotic zeitge-
bers[23]. Thus, the extended activity in LD 19:5-DIM ani-
mals may represent a continuity between NWR-induced and
phase-shifted circadian activity. In support of this point, ac-
tivity offset on this first day after transfer also appears to be
advanced in LD 19:5-DIM animals relative to their DARK
cohorts.
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ark-exposed animal. Although dim illumination may a
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s well below previously reported photic requirements
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f these responses, the latter is the most sensitive,
reviously reported light thresholds ranging from 1.1
.08 lux[6,7,30,31]. Consistent with these published fluen
esponse curves, discrete 1 h dim light pulses during ea
ate subjective night (CT 14 and CT 18) did not induce ph
hifts among animals free running in otherwise constant d
ess (unpublished observations). Furthermore, melat
ependant photoperiodic responses were intact under
ay photoperiods incorporating comparable scotopic illu
ation[13].

If scotopic illumination facilitates LDLD-induced spl
ing independent of activity levels and classic circadian
ponses to photic stimuli, in what manner could it oper
.

ause differential phase resetting was not observed fo
4:10-entrained animals after NWR alone, augmented p
elays after the compound stimulus likely resulted from

ight interacting with the bright light stimulation during ea
ubjective night. Experiment 3, which focused on photic
nd minimized novelty-induced activity, also indicated
im light modulates light-induced resetting. Specifically,

er the abrupt change from LD 14:10 to LD 17:7, DIM anim
isplayed a less positiveψL/D and shorterα relative to DARK
nimals.

Because photoperiodic compression ofα has bee
mplicated in LDLD-induced splitting[12,15], Experimen

primarily investigated whether dim light would influen
e-entrainment to skeleton photoperiods simulating
reases in day length. Scotopic illumination unambiguo
ccelerated the emergence of a phase jump under
onditions. Phase jump responses observed presently
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to generate phase jumps in this manner. In multi-oscillator
models of the circadian pacemaker, the coupling between
component oscillators also changes as a function ofα [35],
and these changes may underlie the expression of phase
jumps. Phase jumping under skeleton photoperiods may
provide an additional paradigm under which dim light
could exert its effect by alteringα and the interactions
between oscillators. A common mechanism could underlie
both phenomena, as a “minimum tolerable night” near 5 h
characterizes both LDLD-induced splitting (unpublished
observations) and phase jumping [Experiment 3,[34,38,41]].
If this were indeed the case, then the fact that phase jumping
was ultimately observed in all DARK animals would
predict that split rhythms would emerge under LDLD cycles
with completely dark nights if shorter scotophases were
provided.

Considering the results from the present three studies, it
is now possible to address the role of dim light in promoting
split rhythms under LDLD. The case is perhaps clearest for
the animals of Experiment 1 that were unsplit prior to Inter-
val 2. During Interval 1, these animals had activity largely
confined to the 5 h nighttime scotophase and were thus ef-
fectively entrained to a skeleton LD 19:5, near the threshold
for phase jumps for DIM animals in Experiment 3. The cage
change at the beginning of Interval 2 provides a nonphotic
zeitgeber similar to that given to LD 19:5 animals in Experi-
m n is
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versus abrupt), similar to previous reports using male ham-
sters[15]. Additionally, splitting initiated during Interval 2
appeared to be less stable than that which emerged during
Interval 1. Only further study can determine whether these
patterns derive from the different photoperiodic histories of
animals splitting in Intervals 1 and 2 or unknown intrinsic
differences in the circadian function of these behaviorally
distinguished hamster groups.

Dim illumination could influence re-entrainment under the
present paradigms by changing the waveform or amplitude
of the photic PRC. The modicum of evidence collected thus
far indicates that dim light does not interact with bright light
in a uniform manner. For example, when the 3 h light pulse
scanned subjective night during phase jumping, this did not
cause a more rapid realignment of activity rhythms in DIM
animals. On the contrary, the transition to the daytime sco-
tophase took significantly longer under dimly lit nights. An
interaction between dim and bright light, moreover, is perhaps
unable to explain the full suite of effects demonstrated thus
far. Following transfer from long to short day lengths, dim
light accelerated re-entrainment[13], which is achieved pri-
marily through means other than bright light-induced phase
shifts[16]. Dim light can certainly affect both nonphotic and
photic resetting but given that these interactions appear to be
limited to specific conditions (e.g. certain photoperiods), we
suggest that dim light’s fundamental action lies elsewhere.
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